The structure of a pair of nilpotent Lie algebras
نویسندگان
چکیده مقاله:
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpotent Lie algebras and generalize results for a pair of non-abelian nilpotent Lie algebras.
منابع مشابه
the structure of a pair of nilpotent lie algebras
assume that $(n,l)$, is a pair of finite dimensional nilpotent lie algebras, in which $l$ is non-abelian and $n$ is an ideal in $l$ and also $mathcal{m}(n,l)$ is the schur multiplier of the pair $(n,l)$. motivated by characterization of the pairs $(n,l)$ of finite dimensional nilpotent lie algebras by their schur multipliers (arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولBounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملSome properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملOn the Structure of the Cohomology of Nilpotent Lie Algebras
The exterior algebra over the centre of a Lie algebra acts on the cohomology of the Lie algebra in a natural way. Focusing on nilpotent Lie algebras, we explore the module structure afforded by this action. We show that for all two-step nilpotent Lie algebras, this module structure is non-trivial, which partially answers a conjecture of Cairns and Jessup [4]. The presence of free submodules ind...
متن کاملDegenerations of nilpotent Lie algebras
In this paper we study degenerations of nilpotent Lie algebras. If λ, μ are two points in the variety of nilpotent Lie algebras, then λ is said to degenerate to μ , λ→deg μ , if μ lies in the Zariski closure of the orbit of λ . It is known that all degenerations of nilpotent Lie algebras of dimension n < 7 can be realized via a one-parameter subgroup. We construct degenerations between characte...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 2
صفحات 37- 47
تاریخ انتشار 2015-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023